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An improved analysis considering the effects of interface roughness and thermal residual
stresses in both radial and axial directions is developed for the single fiber push-out test.
The roughness of the interface, which has a significant effect on the fiber sliding behavior, is
expressed by a Fourier series expansion that has good convergence and can handle general
shapes of roughness. The interfacial shear stress that plays an important role in interfacial
debonding is very much affected by the axial thermal residual stress in the bonded region,
which can induce a two-way debonding mechanism. It has been found that both residual
stress and interface roughness have pronounced effects on the stress transfer across the
interface and interfacial debonding behaviour. C© 2001 Kluwer Academic Publishers

1. Introduction
Structural reliability of composite materials can be
strongly affected by the fracture properties of the inter-
face between fiber and matrix [1, 2]. Recently, there is
much interest on the debonding phenomenon and fric-
tional sliding behaviour along composite interfaces. An
important feature in fibrous composite applications to
engineering technology is the stress transfer between
fiber and matrix across the interface. Along the per-
fectly bonded region, the elastic stress transfer at the
interface can be determined. Apart from this, another
important phenomenon in brittle matrix composites is
the stress transfer by friction governed by Coulomb’s
friction law after the interface bond has failed. The load-
bearing capacity of composite materials depends on the
efficiency of stress transfer at the bonded and debonded
interfaces, which are mainly controlled by the mechan-
ical properties of fiber and matrix and by the nature of
the bonding.

It is reported that interface frictional sliding of fibers
is a major toughening mechanism that occurs in the
crack-wake bridging zone [1–3]. Progressive debond-
ing and frictional sliding at the interface are hence of
fundamental interest. Single fiber pull-out and/or push-
out techniques have been used to characterize the be-
havior of the interface between these two constituents.
Initial and maximum debond stresses as well as fric-
tional pull-out and/or push-out stresses can be deter-
mined from experimental load-displacement curves.
Analyses have also been developed for the test to pro-
vide a theoretical basis for experimental determination
of the interfacial properties [4–6]. Although most of the
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previous models do not include the roughness of the
debonded interface that has a pronounced effect on
the interfacial frictional sliding behavior, some recent
studies have indeed considered this effect analytically
and/or experimentally.

When a single fiber is pulled and/or pushed, a push-
back phenomenon that results in a ‘reseating load drop’
was first reported by Jero and Kerans [7] for fiber push-
out. This result has also been confirmed by Carteret al.
[8] using a fiber pull-out test. The observation of a fiber
being pushed back to the original position indicated di-
rectly that the fiber and the matrix have a rough interface
in the debonded region. Kerans and Parthasarathy [9]
included the effects of interface roughness and residual
axial strain in the fiber to predict the load-displacement
behavior. Their model is expected to be appropriate
for relatively large sliding displacements. However, in
many crack-bridging problems, the sliding displace-
ments are small. Therefore, their analyses are extended
to include effects of interfacial roughness by introduc-
ing a friction parameter [10]. They also studied the ef-
fect of interfacial roughness on the frictional sliding
using fiber push-out and push-back tests on a model
composite of Plexiglas rods in an epoxy matrix [11].
Mackin et al. [12, 13] have developed an analytical
model of fiber sliding for the push-out problem. The
roughness of the debonded interface was modeled us-
ing fractal algorithms with identical fractal profiles as-
signed to both sides of the debond, but the effects of the
axial elastic deformations of both fiber and matrix to the
asperity mismatch were neglected for the full fiber slid-
ing process. Liuet al. [14] have given a more rigorous
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model for a single fiber pull-out with a rough interface
using a Fourier series approach. It was assumed that the
interface between fiber and matrix has been completely
debonded and the solutions of fiber pull-out stress and
relative displacement along the interface were derived.
They extended their analysis to the case of fiber push-
out in terms of asperity wear to simulate the change of
the frictional push-out stress during fiber sliding [15].
The advantage of the Fourier representation, as dis-
tinct from earlier studies, is that it can accommodate
many different surface roughness profiles. Also, a re-
cent model of an interface with micro-dilatancy was
proposed by Stupkiewicz [16] in which the radial mis-
fit varies and depends on the relative displacement by
extending the model of a strip on a frictional founda-
tion. The irreversible effects of wear of asperities can be
included for large sliding distances or for cyclic load-
ing. Parthasarathy and Kerans [17] studied the potential
effects of interfacial roughness in ceramic composites
using a model that included the progressively increas-
ing contribution of roughness.

2. The present work
The present paper describes an improved single fiber
push-out model in consideration of interface roughness
and thermal residual stresses in both radial and axial di-
rections. Most of the existing analyses considered the
thermal residual stress in the radial direction that arises
from mismatch of the coefficients of thermal expansion
between the two constituents along the interface. While
previous studies [9, 10, 16, 17] have included models
with interface roughness and thermal residual stresses
in both directions, relatively little effort seems to have
been spent to explain the significant effect of the ther-
mal residual stress in the axial direction on the stress
distribution in the bonded region. The interface between
fiber and matrix is initially perfectly bonded, then par-
tially debonded, and finally completely debonded as
the external load is gradually increased. In comparison
with earlier investigations [14, 15], a full range of load-
ing and interfacial bond conditions were considered in
this paper in order to characterize the debonding and
frictional sliding behaviours during the evolution of the
whole fiber push-out process.

Shear-lag models were used to model the fiber-matrix
system and to determine interface properties. The in-
terface roughness was expressed by a Fourier series
expansion that had good convergence and could handle
general shapes of roughness as mentioned earlier. With
this approach, geometric details of roughness are char-
acterised by the average wavelength and the maximum
amplitude. It is felt, however, that these two parame-
ters are sufficient to differentiate the influences of the
surface geometries as shown in [14]. The effect of the
axial thermal residual stress on stress distribution in
the bonded region was also rigorously considered. Ef-
fects on the axial and shear stress distributions, that is,
stress transfer properties, and interfacial debonding be-
haviour, such as stress required for further debonding,
were studied. It is concluded that the stress distribu-
tions in the bonded region are significantly affected by
the presence of the thermal residual stress in the ax-

Figure 1 Schematics of the model for single fiber push-out.

ial direction. The distribution of the interfacial shear
stress in the bonded region suggests possible two-way
debonding, which was rarely reported in previous work
except in [18, 19]. It also confirmed that the interface
roughness is an important cause of crack toughening.
Therefore, both thermal residual stresses and interface
roughness had pronounced effects on the stress trans-
fer across the composite interface and the interfacial
debonding behaviour.

3. Theoretical analysis
The geometry of a composite cylindrical model for sin-
gle fiber push-out test is shown in Fig. 1. A set of
cylindrical coordinates (r, θ, z) is selected such that the
z-axis corresponds to the axis of the fiber andr is the
distance from the fiber axis.L is the whole embedded
axial length, and from whichl is the debonded length.
A fiber of radiusa is located in the center of the matrix
shell of radiusb. The matrix is fixed at the bottom end
(z= L) and a compressive stress,σ , is applied to the
fiber end (z= 0). The mode of deformation is axisym-
metric and the stress and displacement components are
all independent of the circumferential directionθ . It is
assumed that the axial stress components in both the
fiber and matrix are independent of the radial coordi-
nate as in previous studies [14, 15].

3.1. Basic equations (0 < z < L)
The equilibrium equations of fiber, matrix and interface
by taking compressive stress as positive require that:

σ z
f (z)+ 1

γ
σ z

m(z) = σ (1)

dσ z
f (z)

dz
= − 1

γ

dσ z
m(z)

dz
= −2

a
τ (z) (2)

∂σ z
m(z)

∂z
+ ∂τ

rz
m (r, z)

∂r
+ τ

rz
m (r, z)

r
= 0 (3)
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whereγ = a2

b2−a2 , andτ (z) in Equation 2 is the inter-
facial stress which is defined asτ (z)= τ rz

m (a, z). By
assuming the fiber and matrix to be isotropic, the stress-
strain relationships are given by:

εθf (r, z) = 1

E f

[
σ θf (r, z)− ν f

{
σ r

f (r, z)+ σ z
f (z)

}]
+α f1T (4)

εz
f (r, z) = 1

E f

[
σ z

f (z)− ν f
{
σ r

f (r, z)+ σ θf (r, z)
}]

+α f1T (5)

εθm(r, z) = 1

Em

[
σ θm(r, z)− νm

{
σ r

m(r, z)+ σ z
m(z)

}]
+αm1T (6)

εz
m(r, z) = 1

Em

[
σ z

m(z)− νm
{
σ r

m(r, z)+ σ θm(r, z)
}]

+αm1T (7)

From Equations 2 and 3, the shear stress distribution
in the matrixτ rz

m (r, z) could be expressed in terms of
interfacial stressτ (z)

τ rz
m (r, z) = γ (b2− r 2)

ar
τ (z) (8)

3.2. Stresses in the debonded region
(0 < z < L)

In the debonded region, frictional slip based on
Coulomb friction law occurs along the interface. Inter-
facial shear stressτ (z) is governed by frictional sliding
as follows

τ (z) = µq(z) (9)

whereq(z) is the interfacial radial stress (compressive)
and could be represented by

q(z) = −[qo − qa(z)− qR(z)] (10)

whereqo is the thermal residual stress (compressive)
in the radial direction.qa(z) is the term caused by the
Poisson’s effect andqR(z) is due to the interaction of
interfacial roughness between fiber and matrix. Resid-
ual stress in the radial directionqo can be derived by
considering the continuity of circumferential strains in
Equations 4 and 6 as

σ z
f (z) = σ − ω(σ̄ + σ )(1− e−λz)− K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2
•
(

cos
nπz

L
+ nπ

λL
sin

nπz

L
− e−λz

)
(23)

qo = Em(αm− α f )1T

α(1− ν f )+ (1+ 2γ + νm)
(11)

whereα f (αm) is the thermal expansion coefficient of
the fiber (matrix), and1T is the temperature change.
qa(z) due to Poisson’s effect can also be obtained from

qa(z) = k1σ
z
f (z)− k2σ (12)

where

k1 = αν f + γ νm

α(1− ν f )+ (1+ 2γ + νm)
(13)

k2 = γ νm

α(1− ν f )+ (1+ 2γ + νm)
(14)

andα= Em

E f
.

Another contribution of radial stressqR(z) is due to the
overlapping of the amplitude of a fiber-matrix asperities
mismatchδ(z)

qR(z) = K

a
δ(z) (15)

in which

K = αE f

α(1− ν f )+ (1+ 2γ + νm)
(16)

The interfacial amplitude functiond(z) can be ex-
pressed in terms of a Fourier series:

d(z) = 1

2
do +

∞∑
n=1

dn cos
nπz

L
(17)

wheredn is the coefficient of the Fourier series ford(z)

dn = 2

L

∫ L

0
d(z) cos

nπz

L
dz (18)

The asperities mismatch functionδ(z) resulting from
the relative displacement of the interfacesv(z) in the
z-direction is given by:

δ(z) = d[z− v(z)] − d(z)

=
∞∑

n=1

dn

[
cos

(
nπ{z− v(z)}

L

)
− cos

nπz

L

]
(19)

δ(z) can also be represented by a Fourier series as

δ(z) = 1

2
Bo +

∞∑
n=1

Bn cos
nπz

L
(20)

where

Bn = 2

L

∫ L

0
δ(z) cos

nπz

L
dz (21)

The differential equation for axial fiber stress is ob-
tained by combining Equations 2, 9, and 10 as follows:

dσ z
f (z)

dz
= 2µ

a
[qo − qa(z)− qR(z)] (22)

Inserting Equations 12, 15 and 20 into Equation 22
and with the stress boundary conditionσ z

f (0)= σ , the
solution of the axial fiber stress becomes:

where

λ = 2µk1

a
(24)

ω = 1

k1
(k1− k2) (25)

σ̄ = −1

k1− k2

(
qo−KBo

2a

)
(26)

The stress at the debond front is obtained fromσ z
f (z) in

Equation 23, i.e.
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σ l
f = σ − ω(σ̄ + σ )(1− e−λl )− K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2
•
(

cos
nπ l

L
+ nπ

λL
sin

nπ l

L
− e−λl

)
(27)

From the solution of axial fiber stressσ z
f (z), the cor-

responding matrix axial stressσ z
m(z) and matrix shear

stressτ rz
m (z) are obtained. That is,

σ 2
m(z) = γω(σ̄ + σ )(1− e−λz)+ γ K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2
•
(

cos
nπz

L
+ nπ

λL
sin

nπz

L
− e−λz

)
(28)

τ rz
m (r, z) = γ (b2− r 2)

2r

{
λω(σ̄ + σ )e−λz+ K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2
•
(
−nπ

L
sin

nπz

L
+ n2π2

λL2
cos

nπz

L
+ λe−λz

)}
(29)

Initial frictional push-out stress (σi f r ) at the onset of
complete debonding of the fiber is determined from the
conditionσ l

f = 0 whenl = L

σi f r = 1

1− ω(1− e−λL )

{
ωσ̄ (1− e−λL )

+ K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2
[(−1)n − e−λL ]

}
(30)

which is equivalent to the previous result [15].
To evaluate the stress distribution, the coefficients

(Bn, where n= 0, 1, 2, . . .∞) of asperity mismatch
δ(z) must be determined by solving the relative dis-
placementv(z) of the fiber and matrix

dv(z)

dz
= d

dz

(
uz

f − uz
m

) = −(εz
f − εz

m

)
(31)

From Equation 1, 5, and 7, Equation 31 becomes

dv(z)

dz
= − 1

αE f

[
λ1σ

z
f (z)− λ2σ + λ3qR− λ3qo+ σo

]
= − 1

αE f

[
λ1σ

z
f (z)− λ2σ − λ3qo + σo

+ λ3
K

a

(
1

2
Bo +

∞∑
n=1

Bn cos
nπz

L

)]
(32)

where

λ1 = α + γ + k1λ3 (33)

λ2 = γ + k2λ3 (34)

λ3 = −2(αν f + γ νm) (35)

and

σo = Em(αm− α f )1T (36)

The resulting solution of the relative displacement sub-
jected to the boundary conditionv(l )= 0, is given by

v(z) = 1

αE f

(
λ1k2− λ2k1

k1
σ − ωλ1σ̄ − λ3qo + σo

+ λ3KB0

2a

)
(l−z)+ 1

αE f

λ1

λ
ω(σ̄+σ)(e−λz−e−λl)

+ 1

αE f

Kλ1

ak1

∞∑
n=1

Bn

(
L

nπ

){
λ3

λ1
k1

− (λL)2

(λL)2+ (nπ )2

}(
sin

nπ l

L
− sin

nπz

L

)

+ 1

αE f

Kλ1

ak1

1

λ

∞∑
n=1

Bn
(λL)2

(λL)2+ (nπ )2

×
(

cos
nπ l

L
− cos

nπz

L
+ e−λz− e−λl

)
(37)

From Equations 19, 20, 23, and 37, the axial stress dis-
tribution σ z

f (z) in the debonded region can be solved
numerically. The measured value of the relative dis-
placement1 at the fiber endz= 0 is given by:

1 = v(0)= 1

αE f

(
λ1k2− λ2k1

k1
σ − ωλ1σ̄ − λ3qo

+ σo + λ3KBo

2a

)
l + 1

αE f

λ1

λ
ω(σ̄ + σ )(1− e−λl )

+ 1

αE f

Kλ1

ak1

∞∑
n=1

Bn

(
L

nπ

){
λ3

λ1
k1

− (λL)2

(λL)2+ (nπ )2

}
sin

nπ l

L
+ 1

αE f

Kλ1

ak1

1

λ

∞∑
n=1

× Bn
(λL)2

(λL)2+ (nπ )2

(
cos

nπ l

L
−e−λl

)
(38)

3.3. Stresses in the bonded region (l < z < L)
In the bonded region, no slip condition at the interface
[i.e.uz

m(a, z) = uz
f (a, z)] should be imposed. The shear
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stress distribution in the matrix is therefore,

τ rz
m (r, z) = Gγ rz

m (r, z)

= Em

2(1+ νm)

(
∂ur

m(r, z)

∂z
+ ∂uz

m(r, z)

∂r

)
(39)

In Equation 39, the radial displacement with respect to
the z-direction can be ignored compared to the axial
displacement gradient with respect to the r-direction.
From Equations 8 and 39

∂uz
m(r, z)

∂r
= 2(1+ νm)

Em

γ

a

(b2− r 2)

r
τ (z) (40)

Integration and rearranging,

σ z
f (z) = 1

sinh
√
η1(L − l )

[(
σ l

f − η2σ + σr
)

sinh
√
η1(L − z)− (η2σ − σr ) sinh

√
η1(z− l )

]+ η2σ − σr (48)

τ (z) = [uz
m(b, z)− uz

m(a, z)
] aEm

2(1+ νm)γ

× 1
1

2
(r 2− b2)− b2 ln

r

b

(41)

σ z
m(z) = [(1− η2)σ + σr ]γ − γ

sinh
√
η1(L − l )

[(
σ l

f − η2σ + σr
)

sinh
√
η1(L − z)− (η2σ − σr ) sinh

√
η1(z− l )

]
(49)

τ rz
m (r, z) = γ (b2− r 2)

2r

√
η1

1

sinh
√
η1(L − l)

[(
σ l

f − η2σ + σr
)

cosh
√
η1(L − z)+ (η2σ − σr ) cosh

√
η1(z− l)

]
(50)

Differentiating with respect toz and imposing the no
slip condition at the interface results in

dτ (z)

dz
= aEm

(1+ νm)

1

2γb2 ln
b

a
−a2

[
εz

m(b, z)−εz
f (a, z)

]
(42)

The differential equation for axial fiber stress is derived
from Equations 1, 2, 5, 7, 12, and 42. Hence, we have

Ut = 1

2E f

∫ L

0

∫ a

0

[(
σ z

f

)2+ (σ r
f

)2+ (σ θf )2− 2ν f
(
σ z

f σ
r
f + σ z

f σ
θ
f + σ θf σ r

f

)]
2πr dr dz+ 1

2Em

∫ L

0

∫ b

a

[(
σ z

m

)2
+ (σ r

m

)2+ (σ θm)2−2νm
(
σ z

mσ
r
m+ σ z

mσ
θ
m+ σ θmσ r

m

)+ 2(1+ νm)
(
τ rz

m

)2]
2πr dr dz (52)

d2σ z
f (z)

dz2
− η1σ

z
f (z) = −η1η2σ + η1η3σo + η1η4qo

(43)

where

η1 = 2

(1+ νm)

(α + γ )− 2k1(αν f + γ νm)

2γb2 ln
b

a
− a2

(44)

η2 = γ (1− 2k1νm)

(α + γ )− 2k1(αν f + γ νm)
(45)

η3 = 1

(α + γ )− 2k1(αν f + γ νm)
(46)

η4 = 2(αν f + γ νm)

(α + γ )− 2k1(αν f + γ νm)
(47)

The resulting equation of the axial stress in the bonded
region subjected to the boundary conditionσ 2

f (l ) = σ l
f

andσ z
f (L) = 0 yields

whereσ z
f (l )= σ l

f could be evaluated from Equation 27
using the continuity condition of axial stress andσr =
η3σo+ η4qo is the contribution of axial and radial ther-
mal residual stresses.

The corresponding matrix axial stressσ z
m(z) and

shear stress in matrixτ rz
m (z) in the bonded region could

be obtained by equilibrium consideration as before

3.4. Interfacial debonding criterion
The interfacial debonding criterion is derived from the
Griffith energy balance equation as the rate change of
the total elastic energy,Ut

Gc = ∂Ut

∂(2πal)
(51)

The total elastic strain energy is obtained from:

The axial and shear components of stresses in the
debonded and bonded regions are given in Equa-
tions 23, 28, 29, 48, 49, and 50. The radial and cir-
cumferential stress components can be solved using the
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continuity conditions of stresses and displacements at
the interface. Thus,

σ r
f = σ θf = q(z) (53)

σ r
m = γ

(
b2− r 2

r 2

)
q(z) (54)

σ θm = −γ
(

b2+ r 2

r 2

)
q(z) (55)

where q(z) is interfacial pressure which is different
in the debonded and bonded regions. In the debonded
region,

q(z) = −qo + k1σ
z
f (z)− k2σ + qR(z)

= k1ω(σ̄ + σ )e−λz− K

a

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2

×
(

cos
nπz

L
+ nπ

λL
sin

nπz

L
− e−λz

)

+ K

a

∞∑
n=1

Bn cos
nπz

L
(56)

And in the bonded region,

q(z) = k1

sinh
√
η1(L − l )

[(
σ l

f − η2σ + σr
)

sinh
√
η1(L − z)− (η2σ − σr ) sinh

√
η1(z− l )

]+ η5σ − q̄ (57)

whereη5= k1η2− k2 and q̄= k1σr +qo. The energy
balance equation for the fiber-matrix interfacial de-
bonding criterion in Equation 51 becomes:

2πaGc = m1σ
2+m2(σ̄ + σ )σ +m3(σ̄ + σ )2

+m4σ +m5(σ̄ + σ )+m6 (58)

where the coefficientsmi are functions of material prop-
erties and geometric factors which are derived analyt-
ically in Appendix A. Rearrangement of Equation 58
gives the remote stress applied to the fiber for further
debond growth. That is,

σ = 1

2m̄1

[−(m̄2σ̄ + m̄3)

+
√

m̄4σ̄ 2+ m̄5σ̄ + m̄6+ 8πam̄1Gc
]

(59)

for which further details of the coefficients̄mi are given
in Appendix B.

4. Results and discussion
To illustrate the effects of interface roughness and
thermal residual stresses on the fiber push-out problem,
specific analyses were conducted for a steel-epoxy
model composite. Its basic physical and mechanical
properties are given in Table I. The interface roughness

TABLE I Material properties and geometric factors

Fiber
Young’s modulusE f (GPa) 210
Poisson’s ratioν f 0.25
Radiusa (mm) 2.5
Thermal expansion coefficientαT

f (10−6/◦C) 12

Matrix
Young’s modulusEm (GPa) 3
Poisson’s ratio’sνm 0.4
Radiusb (mm) 10
Thermal expansion coefficientαT

m (10−6/◦C) 65

Interface
Axial lengthL (mm) 50
Coefficient of frictionµ 0.5
Temperature change1T (◦C) −100
Fracture toughnessGc (J/m2) 20

Figure 2 Interface roughness (wavelength: 0.01L = 0.5 mm,dmax =
0.005a = 0.0125 mm).

was assumed to have an average wavelength of 0.01L
and maximum amplitude of 0.005a as shown in Fig. 2.

(Heretofore, all plots in Figs 3–7 correspond to these
material parameters and interface roughness dimen-
sions given). An iterative approach was used to calcu-
late the effect of interface roughness represented by the
Fourier series coefficientBn. For a given applied stress,
the initial value of the relative displacement function
v(z) in Equation 9, whenBn= 0, was used to calcu-
late the initial asperities mismatchδ(z) in Equation 5.
Axial fiber stress in Equation 7 and relative displace-
mentv(z) in Equation 9 were then computed after de-
termining the Fourier series coefficientsBn from Equa-
tion 6 for an initial value ofδ(z). The iterative process
was stopped when the condition of axial fiber stress

| σ z
f (z),i+1−σ z

f (z),i
σ z

f (z),i
| ≤10−6 was satisfied.

To account for the effect of axial thermal residual
stressσo on the stress distribution, the variation of the
axial fiber stressσ z

f (z) and interfacial shear stressτ (z)
are plotted as a function of the axial distancez in Figs 3
and 4, respectively. Three types of interfacial bond con-
ditions, namely fully bonded, partially debond and fully
debonded cases were studied. The debonded length in
the partially debonded case was determined from the
debonding criterion in Equation 12 for a given applied
stress and fiber length. The general trend of the stress
distribution was different between the different inter-
facial bond conditions. In the bonded region (Figs 3a
and 4a), the axial fiber stress and the interfacial shear
stress decrease rapidly from the loaded end (z= 0)
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Figure 3 Axial fiber stress distribution: Effect of thermal residual stress
for the cases of (a) fully bonded, (b) partially debonded, and (c) fully
debonded.

towards the bottom end (z= L) in the case of zero ax-
ial thermal residual stress. The distribution of the axial
fiber stress was very much affected by the presence of
axial thermal residual stress, which results in a plateau
region along the fiber length and diminishes to zero at
the free end (Fig. 3a and b). It can be seen that the
interfacial shear stress, which plays an important role
in interfacial debonding, is also significantly affected
by the axial thermal residual stress in the bonded re-
gion (Fig. 4a and b). The distribution of the interfacial

Figure 4 Interfacial shear stress distribution: Effect of thermal resid-
ual stress for the cases of (a) fully bonded, (b) partially debonded, and
(c) fully debonded.

shear stress in the bonded region which is proportional
to the rate change of axial fiber stress as in Equation 2
has two peaks at the loaded end (or debond front) and
the bottom free end, Fig. 4a and b, which suggests pos-
sible two-way debonding caused by the axial thermal
residual stress. Although the peak values of interfacial
shear stresses are dependent on the material combina-
tion of fiber and matrix, the result has not been observed
in earlier studies and is left for future experimental
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Figure 5 Axial fiber stress distribution showing the effect of interface
roughness.

Figure 6 Applied stress required for further debonding: effect of thermal
residual stress.

Figure 7 Applied stress required for further debonding showing the
effect of interface roughness.

verification. The axial thermal residual stress does not
cause any difference in both axial fiber stress and in-
terfacial shear stress in the debonded region (Figs 3c
and 4c). The effect of interface roughness on the axial
fiber stress distribution is plotted in Fig. 5 for a smooth
interface and a rough interface as characterised in Fig. 2.

Clearly interface roughness has a significant effect on
the axial fiber stress in the debonded region.

The applied stress required for further debonding at
the debond lengthl can be determined from the inter-
facial debonding criterion of Equation 59. The effect
of axial thermal residual stress on interfacial debond-
ing is shown in Fig. 6. Except for the unstable re-
gion (l > 0.85L), the applied stress required to maintain
debonding of the interface is higher in the presence of
the axial thermal residual stress. This can be interpreted
as a discouragement of interfacial debonding. The ef-
fect of interface roughness of different maximum am-
plitude (dmax) but the same average wavelength is also
shown in Fig. 7. As expected, the effect of interface
roughness on the interfacial debonding behaviour be-
comes more significant as the amplitude of roughness
increases.

5. Conclusions
An improved model considering the effects of interface
roughness and thermal residual stresses is presented for
the single fiber push-out test. The Fourier representa-
tion of the surface roughness and the energetic debond
criterion according to Griffith are different to other ap-
proaches shown in the literature. The distributions of the
axial fiber stress and the interfacial shear stress in the
bonded region are significantly affected by the presence
of the axial thermal residual stress. The distribution of
the interfacial shear stress in the bonded region of a par-
tially debonded interface also suggests a possibility of
two-way debonding. Both thermal residual stresses and
interface roughness affect the interfacial debonding be-
havior. It has been shown that larger applied stresses are
required for further debonding at given debond lengths.

Appendix A

m1 =
(
1− 2η2+ 2η2

2

)∂ F̃1

∂l
+ η2(1− η2)

∂ F̃2

∂l

+ (1− 2η2)b̃3
∂F3

∂l
− b4− η2

5b5+ η2η5b6

+ πa2

2Em
α (A1)

m2 = ωe−λl

[
2λ(−1+ η2)F̃1− λ(η2F̃2+ b̃3F3)

− k1
πa2

Em
2αν f

]
+ ω(1− e−λl )

×
[

2(−1+ η2)
∂ F̃1

∂l
−
(
η2
∂ F̃2

∂l
+ b̃3

∂F3

∂l

)

− πa2

Em
α

]
(A2)

m3 = ω2e−2λl

[
(1− eλl )2

(
∂ F̃1

∂l
+ b2

)
+ b1λ

2

+ b5k2
1 − (1− eλl )(2λF̃1+ k1b6)

]
(A3)
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m4 = −2(1− η2)

[
∂ F̃1

∂l
Rn + F̃1Qn

]
− η2

[
∂ F̃2

∂l
Rn + F̃2Qn

]
− b̃3

[
∂F3

∂l
Rn + F3Qn

]
+
[
(1− 2η2)

∂ F̃3

∂l
+ 2b̃3

∂F3

∂l
− b3− η5b6

]
σr

+ [2η5b5− η2b6]q̄ − πa2α

Em
Rn

+ πa2

Em
(2αν f )(k1Rn − Pn) (A4)

m5 = ωe−λl [2λ(F̃1Rn + b1Qn)− λF̃3σr

− 2k1b5(k1Rn − Pn)+ k1b6Rn]

+ω(1− e−λl )

[
2

(
∂ F̃1

∂l
+ b2

)
Rn + 2F̃1Qn

− ∂ F̃3

∂l
σr − b6(k1Rn − Pn)

]
(A5)

m6 =
(
∂ F̃1

∂l
+ b2

)
R2

n + 2F̃1RnQn + b1Q2
n

−
(
∂ F̃3

∂l
Rn + F̃3Qn

)
σr − b5q̄2+ b6σr q̄

+
(
∂ F̃3

∂l
+ 2b̃2

∂F3

∂l
− b2

)
σ 2

r + b5(k1Rn − Pn)2

− b6(k1Rn − Pn)Rn (A6)

where

F̃1 = F1− k1b6F4+ k2
1b5F4 (A7)

F̃2 = F2+ k1b6F5− k2
1b5F5 (A8)

F̃3 = 2F̃1− F̃2+ 2b̃2F3 (A9)

F1 = 1

2
√
η1

[
(b1η1− b2)

φ

sinh2 φ
+ (b1η1+ b2) cothφ

]
(A10)

F2 = 1√
η1

[
(b1η1− b2)

φ coshφ

sinh2 φ
+ (b1η1+ b2)

1

sinhφ

]
(A11)

F3 = 1√
η1

(1− coshφ)

sinhφ
(A12)

F4 = 1

2
√
η1

(
cothφ − φ

sinh2 φ

)
(A13)

F5 = 1√
η1

(
φ coshφ

sinh2 φ
− 1

sinhφ

)
(A14)

b1 = π (1+ νm)

2Em
γ 2
[
b4 ln

b

a
− 1

4
(3b2− a2)(b2− a2)

]
(A15)

b2 = πa2

2Em
(α + γ ) (A16)

b3 = πa2

Em
[γ − (α + γ )η2] (A17)

b4 = πa2

2Em

[
αη2

2 + γ (1− η2)2] (A18)

b5 = πa2

Em
[α(1− ν f )+ (1+ 2γ + νm)] (A19)

b6 = πa2

Em
2(αν f + γ νm) (A20)

b̃2 = b2+ b5
q̄

σr
− b6

(
k1+ q̄

σr

)
(A21)

b̃3 = b3− 2k1η5b5+ (k1η2+ η5)b6 (A22)

φ = √η1(L − l ) (A23)

Pn = Pn(l ) = K

a

∞∑
n=1

Bn cos
nπ l

L
(A24)

Rn = Rn(l ) = K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2

×
[

cos
nπ l

L
+ nπ

λL
sin

nπ l

L
− e−λl

]
(A25)

Qn = Qn(l ) = d Rn(l )

dl
= K

ak1

∞∑
n=1

(λL)2Bn

(λL)2+ (nπ )2

×
[
−nπ

L
sin

nπ l

L
+ n2π2

λL2
cos

nπ l

L
+ λe−λl

]
(A26)

Appendix B

m̄ = m1+m2+m3 (A27)

m̄2 = m2+ 2m3 (A28)

m̄3 = m4+m5 (A29)

m̄4 = m2
2− 4m1m3 (A30)

m̄5 = 2m4(m2+ 2m3)− 2m5(2m1+m2) (A31)

m̄6 = (m4+m5)2− 4m6(m1+m2+m3) (A32)
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