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New analysis on the fiber push-out problem with
interface roughness and thermal residual stresses
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An improved analysis considering the effects of interface roughness and thermal residual
stresses in both radial and axial directions is developed for the single fiber push-out test.
The roughness of the interface, which has a significant effect on the fiber sliding behavior, is
expressed by a Fourier series expansion that has good convergence and can handle general
shapes of roughness. The interfacial shear stress that plays an important role in interfacial
debonding is very much affected by the axial thermal residual stress in the bonded region,
which can induce a two-way debonding mechanism. It has been found that both residual
stress and interface roughness have pronounced effects on the stress transfer across the
interface and interfacial debonding behaviour. © 2001 Kluwer Academic Publishers

1. Introduction previous models do not include the roughness of the
Structural reliability of composite materials can be debonded interface that has a pronounced effect on
strongly affected by the fracture properties of the interthe interfacial frictional sliding behavior, some recent
face between fiber and matrix [1, 2]. Recently, there isstudies have indeed considered this effect analytically
much interest on the debonding phenomenon and fricand/or experimentally.
tional sliding behaviour along composite interfaces. An  When a single fiber is pulled and/or pushed, a push-
important feature in fibrous composite applications toback phenomenon that results in a ‘reseating load drop’
engineering technology is the stress transfer betweewas first reported by Jero and Kerans [7] for fiber push-
fiber and matrix across the interface. Along the per-out. This result has also been confirmed by Caeterl.
fectly bonded region, the elastic stress transfer at th8] using a fiber pull-out test. The observation of a fiber
interface can be determined. Apart from this, anothebeing pushed back to the original position indicated di-
important phenomenon in brittle matrix composites isrectly thatthe fiber and the matrix have arough interface
the stress transfer by friction governed by Coulomb’sin the debonded region. Kerans and Parthasarathy [9]
friction law after the interface bond has failed. The load-included the effects of interface roughness and residual
bearing capacity of composite materials depends on thaxial strain in the fiber to predict the load-displacement
efficiency of stress transfer at the bonded and debonddakhavior. Their model is expected to be appropriate
interfaces, which are mainly controlled by the mechanor relatively large sliding displacements. However, in
ical properties of fiber and matrix and by the nature ofmany crack-bridging problems, the sliding displace-
the bonding. ments are small. Therefore, their analyses are extended
Itis reported that interface frictional sliding of fibers to include effects of interfacial roughness by introduc-
is a major toughening mechanism that occurs in theng a friction parameter [10]. They also studied the ef-
crack-wake bridging zone [1-3]. Progressive debondfect of interfacial roughness on the frictional sliding
ing and frictional sliding at the interface are hence ofusing fiber push-out and push-back tests on a model
fundamental interest. Single fiber pull-out and/or push-composite of Plexiglas rods in an epoxy matrix [11].
out techniques have been used to characterize the bbtackin et al. [12, 13] have developed an analytical
havior of the interface between these two constituentsmodel of fiber sliding for the push-out problem. The
Initial and maximum debond stresses as well as fricroughness of the debonded interface was modeled us-
tional pull-out and/or push-out stresses can be deteing fractal algorithms with identical fractal profiles as-
mined from experimental load-displacement curvessigned to both sides of the debond, but the effects of the
Analyses have also been developed for the test to praxial elastic deformations of both fiber and matrix to the
vide a theoretical basis for experimental determinatiorasperity mismatch were neglected for the full fiber slid-
of the interfacial properties [4—6]. Although most of the ing process. Litet al. [14] have given a more rigorous
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model for a single fiber pull-out with a rough interface G

using a Fourier series approach. It was assumed that th 222

interface between fiber and matrix has been completely v »T
debonded and the solutions of fiber pull-out stress and
relative displacement along the interface were derived. |
They extended their analysis to the case of fiber push- ! z
out in terms of asperity wear to simulate the change of
the frictional push-out stress during fiber sliding [15]. .
The advantage of the Fourier representation, as dis-
tinct from earlier studies, is that it can accommodate |
many different surface roughness profiles. Also, a re-
cent model of an interface with micro-dilatancy was
proposed by Stupkiewicz [16] in which the radial mis-
fit varies and depends on the relative displacement by
extending the model of a strip on a frictional founda-
tion. The irreversible effects of wear of asperities can be
included for large sliding distances or for cyclic load-
ing. Parthasarathy and Kerans [17] studied the potential_x

effects of interfacial roughness in ceramic composites — L
using a model that included the progressively increas- 2a
ing contribution of roughness. B 2 i

Figure 1 Schematics of the model for single fiber push-out.
2. The present work

The present paper describes an improved single fibggy direction. The distribution of the interfacial shear
push-out model in consideration of interface roughnessress in the bonded region suggests possible two-way
and thermal residual stresses in both radial and axial digeponding, which was rarely reported in previous work
rections. Most of the existing analyses considered th@xcept in [18, 19]. It also confirmed that the interface
thermal residual stress in the radial direction that arisegoughness is an important cause of crack toughening.
from mismatch of the coefficients of thermal expansionTherefore, both thermal residual stresses and interface
between the two constituents along the interface. Whilgoyghness had pronounced effects on the stress trans-

previous studies [9, 10, 16, 17] have included modelger across the composite interface and the interfacial
with interface roughness and thermal residual stressegehonding behaviour.

in both directions, relatively little effort seems to have

been spent to explain the significant effect of the ther- . ]

mal residual stress in the axial direction on the stresg: Theoretical analysis o _
distribution in the bonded region. The interface betweerl "€ geometry of a composite cylindrical model for sin-
fiber and matrix is initially perfectly bonded, then par- 9/€ fiber push-out test is shown in Fig. 1. A set of
tially debonded, and finally completely debonded ascYlindrical coordinatesr(6, z) is selected such that the
the external load is gradually increased. In comparisorf-@XiS corresponds to the axis of the fiber and the
with earlier investigations [14, 15], a full range of load- distance from the fiber axid. is the whole embedded
ing and interfacial bond conditions were considered ir2Xial length, and from whichis the debonded length.
this paper in order to characterize the debonding and fiber of radiusa is located in the center of the matrix
frictional sliding behaviours during the evolution of the Shell of radiusb. The matrix is fixed at the bottom end
whole fiber push-out process. (z=L) and a compressive stress, is applied to the

Shear-lag models were used to model the fiber-matrifiPer €nd ¢=0). The mode of deformation is axisym-
system and to determine interface properties. The inMetric and the stress and displacement components are
terface roughness was expressed by a Fourier seri@ll independent of the; circumferential dlrect@nlt is
expansion that had good convergence and could hand%ssumed that .the ax_lal stress components in both t_he
general shapes of roughness as mentioned earlier. WiffPer and matrix are independent of the radial coordi-
this approach, geometric details of roughness are chaP@t€ as in previous studies [14, 15].
acterised by the average wavelength and the maximum
amplitude. It is felt, however, that these two parame-3.1. Basic equations (0 < z < L)
ters are sufficient to differentiate the influences of theThe equilibrium equations of fiber, matrix and interface
surface geometries as shown in [14]. The effect of theéby taking compressive stress as positive require that:
axial thermal residual stress on stress distribution in

the bonded region was also rigorously considered. Ef- z 1,5

fects on the axial and shear stress distributions, that is, 0@+ om@) =0 (3)
stress transfer properties, and interfacial debonding be- do?(2) 1 do?(2) >

haviour, such as stress required for further debonding, T 270 %) ()
were studied. It is concluded that the stress distribu- dz y dz a

tions in the bonded region are significantly affected by don(@) | Aty (r.2) | (2

the presence of the thermal residual stress in the ax- 97 + ar + r =0 ®3)
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wherey = bz%z andz(z) in Equation 2 is the inter- ky, = YVm (14)
facial stress which is defined a€z) = t/?(a, 2). By a(l—vi)+(1+2y + vm)
assuming the fiber and matrix to be isotropic, the stress; g — En

) ) . ) _ ;
strain relationships are given by: Another contribution of radial stregg(2) is due to the

(1. 2) = Eif[o?(r’ 2 vy {a?(r, 2t sz(z)}] :)nvgrl;p:gimi]?gfthe amplitude of a fiber-matrix asperities
N @ aR(2) = =502 (15
G0 = £ lof@ - ol D +ol )] e -
+af AT (5) K:a(l—Vf)+(1+2y+vm) (16)
0= o2l oAl ST arpude urcion) can be ex
+omAT (6)

1 > Nz
em(r.2) = E—m[o'm(z) - Vm{om(r’ 2) + o, Z)}] "~

+amAT (7)

whered, is the coefficient of the Fourier series fiiz)

2 (t nmz
_ S - —/ d(2) cosl dz (18)
From Equations 2 and 3, the shear stress distribution
in the matrixz;7(r, Z) could be expressed in terms of The asperities mismatch functid(z) resulting from

interfacial stress (z) the relative displacement of the interfacgg) in the
. y(b? —r2) z-direction is given by:
Ti ) = () ®)
ar 8(z2) =d[z—v(2]—-d(2
3.2. Stresses in the debonded region nr{z— v(2)} Nz
(0<z<L) —Zdn[c s( : ()) osT] (19)

In the debonded region, frictional slip based on
Coulomb friction law occurs along the interface. Inter-§(z) can also be represented by a Fourier series as
facial shear stresqz) is governed by frictional sliding

as follows 8(2) == B0 + Z Bn cosTZ (20)
(2 = na(2) C)
: : . . __wher
whereq(z) is the interfacial radial stress (compressive) L
and could be represented by B, = 2 / 8(2) COSI’ILZ dz (21)
L Jo L
a(2) = —[do — 9a(2) — Ar(2)] (10)

The differential equation for axial fiber stress is ob-
whereq; is the thermal residual stress (compressiveYained by combining Equations 2, 9, and 10 as follows:

in the radial directiong,(2) is the term caused by the doZ(z) 2
Poisson’s effect andr(z) is due to the interaction of LA _“[qo 0a(2) — gr(2)] (22)
interfacial roughness between fiber and matrix. Resid- dz

ual stress in the radial directiap can be derived by Inserting Equations 12, 15 and 20 into Equation 22
considering the continuity of circumferential strains in and with the stress boundary conditief(0) = o, the

Equations 4 and 6 as solution of the axial fiber stress becomes:
_ L (AL)?B, ntz nr __ nmz
o) =0 —wo +o)1l—e*?)— Z G+ o * \ cos T +osin———e z (23)
Em(am — af)AT where
Go = (11)
a(l—ve)+ 1+ 2y +vm) A_Zuh (24)
wherea ¢ (om) is the thermal expansion coefficient of - a
the fiber (matrix), and\T is the temperature change. 1
0a(2) due to Poisson’s effect can also be obtained from w = k—l(k1 —k2) (25)
0a(2) = k10 {(2) — koo (12) | KB
i f 7= e (w5 (26)
where ki — ko 2a
Ky = avi +¥vm (13) The stress at the debond front is obtained feofte) in
a(l—vi)+ 1+ 2y +vm) Equation 23, i.e.

2097



(AL)?Bn

Ulf =0 —wlo+o)(l- e‘“) Ik Z (M_)Z + (nzr)2

co nl+nn.n7rl
L

—
0 L—ek) (27)

From the solution of axial fiber stresg(z), the cor-
responding matrix axial stresg;,(z) and matrix shear jected to the boundary conditiarfl) =0, is given by
stressr;Z(z) are obtained. That is,

2,0\ _ _, (AL)?B, nwz  nmwo . vz
om(@) = yole +o)1 e + Z < (AL)? + ()2 * oS ‘ (28)
(% —r?) _ L (AL)?B, nt . nrz n’z?  nmz L
T'2(r, 2) = (el +o)e z4 Z (AL)2+(nn)2 — - Sin= -+ 7 cos——+1e z
(29)
Initial frictional push-out stresso(s,) at the onset of 1 [k — Aok —
complete debonding of the fiber is determined from the?(2) = ~ E; k0 @0 sl do
conditiono’} =0 whenl =L
A3K 1 X
+ 28 BO>(| —)+— oG +o)e i —e)
1 S ef)LL) 2a aEs A
oiff = —————wo(l—
Tl w(l-et) L2 leiB ERVEED
=r akl — " nm Al !
Z _OLPBy gp ey =
akl 7 (AL)? + (nm)?

(AL)? . nrxl . Nmz
_m}(smT _SmT>

(L)?
(AL)2 + (nm)2

(30)

which is equivalent to the previous result [15].
To evaluate the stress distribution, the coefficients

1 Kyl
the ¢ e 7 2B
(B, wheren=0,1,2,...00) of asperity mismatch «Er aky A

The resulting solution of the relative displacement sub-

3(2) must be determined by solving the relative dis-

placemenb(z) of the fiber and matrix

dv(@ d
VY = —un) = (e — <)

(31)

From Equation 1, 5, and 7, Equation 31 becomes

COSnT(I COSm-[Z +e
X —_—— —
L L

AZ eM) (37)
From Equations 19, 20, 23, and 37, the axial stress dis-
tribution o£(2) in the debonded region can be solved
numerically. The measured value of the relative dis-
placementA at the fiber end =0 is given by:

1
d:;(zZ) aEj o, 11972 = 320 + A3 — Ao+ 0o A =v(0)= L (et 5
- B OlEf kl ! 3qo
1 2 13KB 1
1 K & L
+Az—| =Bo + B cos— 32 — = B[ — )=k
] < ' Zn )} (32) "o e B (n ){Ml
where oy cnrl 1 Kyl
G2+ 2 [S" 0 T aE ak & Z
M =a+y+Kis (33) ,
AL I
G ¢4 TR = G I
Az = —2(avi + yvm) (35)
and 3.3. Stresses in the bonded region (/ < z < L)
In the bonded region, no slip condition at the interface
0o = Em(am — a)AT (36) [i.e.ui(a, z) = u%(a, 2)] should be imposed. The shear
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stress distribution in the matrix is therefore,
(1, 2) = Gy (r, 2)
E auy(r, z UZ(r, z
2(1+ vm) 0z ar

In Equation 39, the radial displacement with respect to

the z-direction can be ignored compared to the axial
displacement gradient with respect to the r-direction.

From Equations 8 and 39

z 2 _ (2
AUZ(r, 2) _ 2(1+vm)y (b°—r )r(z) (40)
ar En a r
Integration and rearranging,
of(2) = ;[(UI — 120 + ar) sinh,/n1(L
f sinhy/mi(L — Y
aEm
= [U%(b 42
1@ = [uh0.2) ~ (@ D)5
1
X A— - (42)
—(r“—=b% —b%In—-
(=) by

om(@ =[(1—n2)o +or]y — -2

4[(‘7'
sinhy/mr(L — 1)

2_r2)
2r

b
T 2(r, 2) = 4 ot — 20 + o

1
sinh/n1(L —1) [(

NGB

Differentiating with respect ta and imposing the no
slip condition at the interface results in

dr(2)
dz

akEn 1
(1+vm) 2ybZIn g —a

[¢2,(b. 2)—¢% (@, 2)]

2

(42)
The differential equation for axial fiber stress is derived

where
2 o+ y) — 2ki(avi + yv
m 2yb2In 2 a’
1-— 2k
o = Y( 1Vm) (45)
(¢ +y) — 2Ki(avs + Yvm)
1
= 46
"=l ) Zalavs ) (40)
2(avi + vy

(@ +y) — 2Kalavi + yvm)

The resulting equation of the axial stress in the bonded
region subjected to the boundary conditiof(l) = a'f
andof(L) = Oyields

—2) — (120 — o7) SiNWYTL(Z — )] + 1120 — 07 (48)

wheresf(l) = o# could be evaluated from Equation 27
using the continuity condition of axial stress and=
N300 + 1400 IS the contribution of axial and radial ther-
mal residual stresses.

The corresponding matrix axial stresg,(z) and
shear stress in matriX?(z) in the bonded region could
be obtained by equilibrium consideration as before

o +oy) sinhy/n1(L — 2) — (20 — o) sinhy/n1(z —1)]
(49)

) coshy/ni(L — 2) + (120 — o) cosh/ni(z—1)]  (50)

3.4. Interfacial debonding criterion

The interfacial debonding criterion is derived from the
Griffith energy balance equation as the rate change of
the total elastic energyJ;

U
3(2ral)

Gc=

(51)

from Equations 1, 2, 5, 7, 12, and 42. Hence, we haveThe total elastic strain energy is obtained from:

2

U = 2Ef// Gf

U f
+ (gr;])z + (o8 )Z_va(arﬁo{n +0kol +abolh) + 2(1+ vm)(
of(2)
7dz Mo §(2) = —nin20o + n1n3oo + N1nato

(43)

©'2)?2xr dr dz (52)

The axial and shear components of stresses in the
debonded and bonded regions are given in Equa-
tions 23, 28, 29, 48, 49, and 50. The radial and cir-

cumferential stress components can be solved using the
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continuity conditions of stresses and displacements atABLE | Material properties and geometric factors
the interface. Thus,

Fiber
Young's modulusE s (GPa) 210
of = g? =q(2) (53) Poisson’s ratio ¢ 0.25
Radiusa (mm) 25
b2 — r2 Thermal expansion coefficieat (107/°C) 12
r .
Om = < > >Q(Z) (54)  Matrix
r Young's modulus, (GPa) 3
b2 4 2 Poisson’s ratio’sm 0.4
0 _ _ Radiusb (mm) 10
Om v < r2 )q(z) (55) Thermal expansion coefficieaf, (10-6/°C) 65
Interface
where q(z) is interfacial pressure which is different éx'a]!f_'e_”gtthﬁ f(r_“:‘_“) 585
in the debonded and bonded regions. In the debondedg (0o 0P ~100
region, Fracture toughnesg, (J/n¥) 20
4(2) = —0o + ko f(2) — koo + Ar(2)
025
_ K& (WL)2B, s {
= k eikz - N 7 )
1(0 +0) a Z (» L)2 + (nyr)z 8 0000 - -
n=1 = 01 02
« COSnnZ n nmw i nmrz e 1z g s axial position, z /L.
L AL L
Figure 2 Interface roughness (wavelengthO0OL = 0.5 mm, dnax =
K & nrz 0.005 = 0.0125 mm).
+—= B, cos— 56
was assumed to have an average wavelength 01.0.01
And in the bonded region, and maximum amplitude of 0.08%s shown in Fig. 2.
40 =~ [0} — a0 + 01) SNAR(L — ) — (20 — o) sinhy/a(z — ] + w50~ G (57)
sinh,/n1(L —1)

where s =kin, — ko andq=kyo; +0o. The energy (Heretofore, all plots in Figs 3—7 correspond to these
balance equation for the fiber-matrix interfacial de-material parameters and interface roughness dimen-

bonding criterion in Equation 51 becomes: sions given). An iterative approach was used to calcu-
late the effect of interface roughness represented by the
272G = Mo? + My(o + 0)o + ma(o + o)? Fourier series coefficiel®,. For a given applied stress,
_ the initial value of the relative displacement function
+ Myo + m5(a + U) + Mg (58)

v(2) in Equation 9, wherB, =0, was used to calcu-
late the initial asperities mismatdéifz) in Equation 5.
where the coefficients; are functions of material prop-  Axial fiber stress in Equation 7 and relative displace-
erties and geometric factors which are derived analytmentv(z) in Equation 9 were then computed after de-
ically in Appendix A. Rearrangement of Equation 58 termining the Fourier series coefficiers from Equa-
gives the remote stress applied to the fiber for furthetion 6 for an initial value o8(z). The iterative process

debond growth. That s, was stopped when the condition of axial fiber stress
|"f(z)g*f+)“‘(z)| < 10° was satisfied.
o [—(M20 + M3) To account for the effect of axial thermal residual

2my stress, on the stress distribution, the variation of the
++/M4o2 + Msor + Mg + 8narﬁlec] (59) axial fiber stressf(z) and interfacial shear stres&z)
are plotted as a function of the axial distaizée Figs 3
for which further details of the coefficients are given ~ 2Nd 4, respectively. Three types of interfacial bond con-
in Appendix B. ditions, namely fully bonded_, partially debond and fully .
debonded cases were studied. The debonded length in
the partially debonded case was determined from the
4. Results and discussion debonding criterion in Equation 12 for a given applied
To illustrate the effects of interface roughness andstress and fiber length. The general trend of the stress
thermal residual stresses on the fiber push-out problendjstribution was different between the different inter-
specific analyses were conducted for a steel-epoxfacial bond conditions. In the bonded region (Figs 3a
model composite. Its basic physical and mechanicaand 4a), the axial fiber stress and the interfacial shear
properties are given in Table |. The interface roughnesstress decrease rapidly from the loaded eng: Q)
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()
Figure 3 Axial fiber stress distribution: Effect of thermal residual stress
for the cases of (a) fully bonded, (b) partially debonded, and (c) fully Figure 4 Interfacial shear stress distribution: Effect of thermal resid-
debonded. ual stress for the cases of (a) fully bonded, (b) partially debonded, and
(c) fully debonded.

towards the bottom ena & L) in the case of zero ax-

ial thermal residual stress. The distribution of the axialshear stress in the bonded region which is proportional
fiber stress was very much affected by the presence db the rate change of axial fiber stress as in Equation 2
axial thermal residual stress, which results in a plateatas two peaks at the loaded end (or debond front) and
region along the fiber length and diminishes to zero athe bottom free end, Fig. 4a and b, which suggests pos-
the free end (Fig. 3a and b). It can be seen that thsible two-way debonding caused by the axial thermal
interfacial shear stress, which plays an important rolgesidual stress. Although the peak values of interfacial
in interfacial debonding, is also significantly affected shear stresses are dependent on the material combina-
by the axial thermal residual stress in the bonded retion of fiber and matrix, the result has not been observed
gion (Fig. 4a and b). The distribution of the interfacial in earlier studies and is left for future experimental
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Figure 5 Axial fiber stress distribution showing the effect of interface

roughness.
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Q#0,0,20

90

60 |

applied stress, O (MPa)
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(=]

debonded length, /L

Figure 6 Applied stress required for further debonding: effect of thermal

residual stress.

Clearly interface roughness has a significant effect on
the axial fiber stress in the debonded region.

The applied stress required for further debonding at
the debond length can be determined from the inter-
facial debonding criterion of Equation 59. The effect
of axial thermal residual stress on interfacial debond-
ing is shown in Fig. 6. Except for the unstable re-
gion ( > 0.85L), the applied stress required to maintain
debonding of the interface is higher in the presence of
the axial thermal residual stress. This can be interpreted
as a discouragement of interfacial debonding. The ef-
fect of interface roughness of different maximum am-
plitude dmax) but the same average wavelength is also
shown in Fig. 7. As expected, the effect of interface
roughness on the interfacial debonding behaviour be-
comes more significant as the amplitude of roughness
increases.

5. Conclusions

An improved model considering the effects of interface
roughness and thermal residual stresses is presented for
the single fiber push-out test. The Fourier representa-
tion of the surface roughness and the energetic debond
criterion according to Griffith are different to other ap-
proaches showninthe literature. The distributions of the
axial fiber stress and the interfacial shear stress in the
bonded region are significantly affected by the presence
of the axial thermal residual stress. The distribution of
the interfacial shear stress in the bonded region of a par-
tially debonded interface also suggests a possibility of
two-way debonding. Both thermal residual stresses and
interface roughness affect the interfacial debonding be-
havior. It has been shown that larger applied stresses are
required for further debonding at given debond lengths.

Appendix A
° my=(1—2n+2 ) L (- )22
e 1= N2 + 21, 8I n2 n2 3l
sl e +(1- 2772)b3— b — n3bs + n2nsbe
g 2
s ra
= . + (A1)
% wl 5x10 2Em
g 3x10° . - -
= 1x10° mp = we ™ |:2)»(—1 + n2)F1 — A(n2F2 + bsFs)
° 10+
ma? 2
—ki—2avi | +w(1—e*)
Em
0 I ) I :

0.0 2 4 K]
debonded length, /L

1.0

aF aF, . 9F
|:2( 1+ 772) ! (71272 + b3W3)

Figure 7 Applied stress required for further debonding showing the
effect of interface roughness. a2 i|
- —a

E (A2)

verification. The axial thermal residual stress does not

cause any difference in both axial fiber stress and in- - o 9F1 5
terfacial shear stress in the debonded region (Figs 3¢13 = @ %e” [(1 e ( + bZ) + by

and 4c). The effect of interface roughness on the axial

fiber stress distribution is plotted in Fig. 5 for a smooth bek? — (1 — Y (20F+ + kib A3
interface and arough interface as characterisedin Fig. 2. +bski — ( )(22F1+ kib) (A3)
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=-2(1- 172)[ “Ro + FlQn:|

oF - ~ T9F
—n{ngm+HQJ—b{3erk%Qq

8F oF
[(1 2'72) ° 2b3—3 — b3 — ’75b6:|0r
_  mala
+ [2nsbs — n2be]q — = Rn
m

2

+ @) (R - ) (r)

ms = we M [2A(F 1Ry + b1Qn) — AF 307
— 2kgbs(ki Ry — Py) + kibgRn]
+o(l— e“)[ (% + b2> Ry + 2F1Qn
aF
Jm—mm&—%ﬂ (A5)
_ 3F1 5 ~ 9
Mg = T + b )Ry + 2F 1Ry Qn + b1 Q5
(8F3 Rn + FSQn>Ur - b5q + bgor q
+(ﬁ3sz3bgﬁ+mma—%V
— bg(ki Ry — Pn)Ry (A6)
where
F1=F1 — kibsFs + k2bsFs (A7)
F2 = F2 + kibsFs — k?bsFs (A8)
Fs =2|51—|52+262F3 (A9)
Fi= 2«/— |:( 111 — bZ)ﬁ + (byn1 + by) COtth_
(A10)
oshg 17
F = ﬁ[(blnl_ (7)) Sinf? 6 +(b1771+b2)sinh¢_
(A11)
1 (1-coshy)
P = = inhg (A12)
1 é
Fa= he¢ — Al
4 Non (COt ¢ sinI*?qb) (AL3)
_ 1 (¢coshp 1
Fs = f( sini? ¢ sinhqs) (AL4)
_7(1+vm) » 4in b 1.5 242 .2
by = =5 [b — 2380 —a?) (b - a )]
(A15)
a2
by = E(a +v) (A16)
2
by = o (A7)

E—m[y — (@ +y)n2l

2

Ta
s = S [end +y(1—no)’] (A18)
wa®
bs = —[a(l —vi)+ 1+ 2y 4+ vm)] (A19)
ra2
b = —2(cvi + yvm) (A20)
Em
5 q q
by =by +bs— — bg| k1 + — (A21)
bs = b3 — 2kynsbs + (Kinz + 15)be (A22)
¢ =ym(L - |) (A23)
nn'l
Ph= Pu(l) = Z Bn co (A24)
K (AL)2B,
= I = -— —
Ro=Ral) aky ; (AL)2 + (nr)?
nzl  nm . nxl Y
|:COST+E mT—e ] (A25)
d F?n(l) K (AL)?B,
I —
= &) = T ak Z < (AL)2 + (nr)?
T nrl N n°m? COSnyrl et
X [ — —_— —_— —_—
L L AL2 L
(A26)
Appendix B
m =my+my+mg (A27)
My = My + 2mg3 (A28)
ﬁ3 = My + Ms (A29)
rﬁ4 = m% — 4mimg (ASO)
ms = 2mg(my + 2mg) — 2ms(2my + my)  (A31)

Me = (Mg + m5)2 -
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